ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION (A Statutory body of the Government of Andhra Pradesh) 3rd, 4th and 5th floors, Neeladri Towers, Sri Ram Nagar, 6th Battalion Road, Atmakur(V), Mangalagiri(M), Guntur-522 503, Andhra Pradesh **Web**: www.apsche.org **Email**: acapsche@gmail.com ## REVISED SYLLABUS OF B.Sc. (ZOOLOGY) UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-21 #### PROGRAMME: THREE-YEAR B.Sc. (Zoology) (With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model Q.P.) For Fifteen Courses of 1, 2, 3 & 4 Semesters) (To be Implemented from 2020-21 Academic Year) ## **Structure of ZOOLOGY Syllabus** ## (Under CBCS for 3-year B.Sc. Programme) ## (With domain subject covered during the first 4 Semesters with 5 Courses) | YEAR | SEM | PAPER | TITLE | MARKS (100) | | | |------|-----|-------|--------------------------|-------------|----------|---------| | | | | | MID | END | CREDITS | | | | | | SEMESTER | SEMESTER | | | I | I | I | Animal Diversity – I | 25 | 75 | 04 | | | | | Biology of Non-Chordates | | | | | | | | Practical - I | 25 | 75 | 01 | | | II | п | Animal Diversity – II | 25 | 75 | 04 | | | | | Biology of Chordates | | | | | | | | Practical - II | 25 | 75 | 01 | | II | III | III | Cell biology, Genetics, | | | | | | | | Molecular Biology & | 25 | 75 | 04 | | | | | Evolution | | | | | | | | Practical - III | 25 | 75 | 01 | | | IV | IV | Physiology, Cellular | 25 | 75 | 04 | | | | | Metabolism & Embryology | | | | | | | | Practical - IV | 25 | 75 | 01 | | | | | Immunology & Animal | 25 | 75 | 04 | | | | V | Biotechnology | | | | | | | | Practical - V | 25 | 75 | 01 | #### AP STATE COUNCIL OF HIGHER EDUCATION w.e.f. 2020-21 (Revised in April, 2020) #### ZOOLOGY – SEMESTER I #### PAPER - I: ANIMAL DIVERSITY - BIOLOGY OF NONCHORDATES HOURS: 60 (5X12) Max. Marks: 100 Course Outcomes: By the completion of the course the graduate should able to – - **CO1** Describe general taxonomic rules on animal classification - CO2 Classify Protozoa to Coelenterata with taxonomic keys - CO3 Classify Phylum Platy hemninthes to Annelida phylum using examples from parasitic adaptation and vermin composting - CO4 Describe Phylum Arthropoda to Mollusca using examples and importance of insects and Molluscans - CO5 Describe Echinodermata to Hemi chordata with suitable examples and larval stages in relation to the phylogeny #### Learning objectives - 1. To understand the taxonomic position of protozoa to helminthes. - 2. To understand the general characteristics of animals belonging to protozoa to hemichordata. - 3. To understand the structural organization of animals phylum from protozoa to hemichordata. - 4. To understand the origin and evolutionary relationship of different phyla from protozoa to hemichordata. - 5. To understand the origin and evolutionary relationship of different phylum from annelids to hemichordates. #### **ZOOLOGY SYLLABUS FOR I SEMESTER** #### PAPER – I: ANIMAL DIVERSITY – BIOLOGY OF NONCHORDATES HOURS:60 (5X12) Max. Marks: 100 #### **UNIT I** - 1.1 Principles of Taxonomy Binomial nomenclature Rules of nomenclature - 1.2 Whittaker's five kingdom concept and classification of Animal Kingdom. #### **Phylum Protozoa** - 1.3 General Characters and classification of protozoa up to classes with suitable examples - 1.4 Locomotion, nutrition and reproduction in Protozoans - 1.5 Elphidium (type study) #### UNIT -II #### **PhylumPorifera** - 2.1 General characters and classification up to classes with suitable examples - 2.2 Skelton in Sponges - 2.3 Canal system in sponges #### **PhylumCoelenterata** - 2.4 General characters and classification up to classes with suitable examples - 2.5 Metagenesisin Obelia - 2.6 Polymorphism in coelenterates - 2.7 Corals and coral reefs #### PhylumCtenophora: **2.8** General Characters and Evolutionary significance(affinities) #### Unit – III #### **PhylumPlatyhelminthes** - 3.1 General characters and classification up to classes with suitable examples - 3.2 Life cycle and pathogenecity of *Fasciola hepatica* #### 3.3 Parasitic Adaptations in helminthes #### **Phylum Nemathelminthes** - 3.4 General characters and classification up to classes with suitable examples - 3.5. Life cycle and pathogenecity of *Ascarislumbricoides* #### Unit – IV #### Phylum Annelida - 4.1 General characters and classification up to classes with suitable examples - 4.2 Evolution of Coelom and Coelomoducts - 4.3 Vermiculture Scope, significance, earthworm species, processing, Vermicompost, economic importance of vermicompost #### Phylum Arthropoda - 4.4 General characters and classification up to classes with suitable examples - 4.5 Vision and respiration in Arthropoda - 4.6 Metamorphosis in Insects - 4.7 *Peripatus* Structure and affinities - 4.8 Social Life in Bees and Termites #### Unit - V #### **Phylum Mollusca** - 5.1 General characters and classification up to classes with suitable examples - 5.2 Pearl formation in Pelecypoda - 5.3 Sense organs in Mollusca ## PhylumEchinodermata - 5.4 General characters and classification up to classes with suitable examples - 5.5 Water vascular system in star fish - 5.6 Larval forms of Echinodermata #### **PhylumHemichordata** 5.7 General characters and classification up to classes with suitable examples ## 5.8 Balanoglossus - Structure and affinities #### **Co-curricular activities (suggested)** - Preparation of chart/model of phylogenic tree of life, 5-kingdom classification, *Elphidium* life cycle etc. - Visit to Zoology museum or Coral island as part of Zoological tour - Charts on life cycle of *Obelia*, polymorphism, sponge spicules - Clay models of canal system in sponges - Preparation of charts on life cycles of Fasciola and Ascaris - Visit to adopted village and conducting awareness campaign on diseases, to people as part of Social Responsibility. - Plaster-of-paris or Thermocol model of *Peripatus* - Construction of a vermicompost in each college, manufacture of manure by students and donating to local farmers - Models of compound eye, bee hive and terminarium (termitaria) by students - Visit to apiculture centre and short-term training as part of apprenticeship programme of the govt. Of Andhra Pradesh - Chart on pearl forming layers using clay or Thermocol - Visit to a pearl culture rearing industry/institute - Live model of water vascular system - Phylogeny chart on echinoderm larvae and their evolutionary significance - Preparation of charts depicting the feeding mechanism, 3 coeloms, tornaria larva etc., of Balanoglossus #### **REFERENCE BOOKS** - **1.** L.H. Hyman 'The Invertebrates' Vol I, II and V. M.C. Graw Hill Company Ltd. - 2. Kotpal, R.L. 1988 1992 Protozoa, Porifera, Coelenterata, Helminthes, Arthropoda, Mollusca, Echinodermata. Rastogi Publications, Meerut. - 3. E.L. Jordan and P.S. Verma 'Invertebrate Zoology' S. Chand and Company. - **4. R.D. Barnes** 'Invertebrate Zoology' by: W.B. Saunders CO., 1986. - **5. Barrington. E.J.W**., 'Invertebrate structure and Function' by ELBS. - 6 P.S. Dhami and J.K. Dhami. Invertebrate Zoology. S. Chand and Co. New Delhi. - **7. Parker, T.J. and Haswell** 'A text book of Zoology' by, W.A., Mac Millan Co. London. - 8. Barnes, R.D. (1982). Invertebrate Zoology, V Edition" ## **ZOOLOGY MODEL PAPER FOR I SEMESTER** ## **ZOOLOGY - PAPER - I** ## ANIMAL DIVERSITY – BIOLOGY OF NONCHORDATES | Time: 3 hrs | | Max. Marks : 75 | |--------------------------------------|----------------|-----------------| | I. Answer any FIVE of the follo | 5x5=25 | | | Draw labeled diagrams where | ever necessary | | | 1. | | | | 2. | | | | 3. | | | | 4. | | | | 5. | | | | 6. | | | | 7. | | | | 8. | | | | II. Answer any FIVE of the following | 5x10=50 | | | Draw labeled diagrams where | ever necessary | | | 9. | | | | | OR | | | | | | | | | | | | | | | 10. | | | | | OR | | | | | | | | | | | | | | | 11. | | | | | OR | | | 12. | | | | | OR | | 13. OR # ZOOLOGY PRACTICAL SYLLABUS FOR I SEMESTER ZOOLOGY - PAPER - I #### ANIMAL DIVERSITY - BIOLOGY OF NONCHORDATES Periods: 24 Max. Marks: 50 #### **Learning Outcomes:** - To understand the importance of preservation of museum specimens - To identify animals based on special identifying characters - To understand different organ systems through demo or virtual dissections - To maintain a neat, labeled record of identified museum specimens #### **Syllabus:** #### 1. Study of museum slides / specimens / models (Classification of animals up to orders) **Protozoa:** Amoeba, Paramoecium, Paramoecium Binary fission and Conjugation, Vorticella, Entamoebahistolytica, Plasmodium vivax **Porifera**: *Sycon, Spongilla, Euspongia, Sycon*- T.S & L.S, Spicules, Gemmule **Coelenterata**: *Obelia* – *Colony & Medusa, Aurelia, Physalia, Velella, Corallium, Gorgonia, Pennatula*v. **Platyhelminthes:** *Planaria, Fasciola hepatica, Fasciola*larval forms – Miracidium, Redia, Cercaria, *Echinococcusgranulosus, Taeniasolium*, Schistosomahaematobiumvii. **Nemathelminthes:** Ascaris(Male & Female), Drancunculus, Ancylostoma, Wuchereria Annelida: Nereis, Aphrodite, Chaetopteurs, Hirudinaria, Trochophore larva Arthropoda: Cancer, Palaemon, Scorpion, Scolopendra, Sacculina, Limulus, Peripatus, Larvae - Nauplius, Mysis, Zoea, Mouth parts of male &female Anopheles and Culex, Mouthparts of Housefly and Butterfly. xiii. **Mollusca:** Chiton, Pila, Unio, Pteredo, Murex, Sepia, Loligo, Octopus, Nautilus, Glochidium larva Echinodermata: Asterias, Ophiothrix, Echinus, Clypeaster, Cucumaria, Antedon, Bipinnaria larva Hemichordata: Balanoglossus, Tornaria larva #### 2. Dissections: 1. Prawn: Appendages, Digestive system, Nervous system, Mounting of Statocyst **2. Insect** Mouth Parts 3. Laboratory Record work shall be submitted at the time of practical e amination - 4. An "Animal album" containing photographs, cut outs, with appropriate write up about the above mentioned taxa. Different taxa/ topics may be given to different sets of students for this purpose - 5. Computer aided techniques should be adopted or show virtual dissections #### **RFERENCEMANUALS:** - 1. Practical Zoology- Invertebrates S.S. Lal - 2. Practical Zoology Invertebrates P.S. Verma - 3. Practical Zoology Invertebrates K.P. Kurl - 4. Ruppert and Barnes (2006) Invertebrate Zoology,8th Edition, Holt Saunders International Edition